ann modeling for estimation of surface and subsurface flows based on watershed geomorphology

نویسندگان

m. r. najafi

k. t. lee

s. m. hosseini

چکیده

in recent years, artificial neural networks (anns) have been widely used for flood esti-mation. in this study, an ann model based on the geomorphologic characteristics of a watershed such as the number of possible paths and their probabilities is developed (gann model). nodes in the input layer are allocated to the surface flows, subsurface flows, excess-rainfall and infiltrated rain. the number of nodes related to excess rainfall is predetermined according to the time of concentration of the watershed. the dependability of the infiltrated rain and surface and subsurface flows on previous time steps are calcu-lated by assigning a different number of nodes to each component. the results of the study showed that the simulated hydrographs by the proposed ann model have good agreement with the hydrographs observed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

A geomorphology-based semi-distributed watershed model

A semi-distributed watershed model was developed that conceptualizes the catchment as a cascade of nonlinear storage elements whose geometric dimensions are derived from the Horton±Strahler ordering of the stream network. Each storage element represents quick storm runo€ over land or in a channel segment. The physically based groundwater submodel is parameterized through the application of the ...

متن کامل

Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?

Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the temporal variation of hillslope-riparian-stream hydrologic connectivity requires estimat...

متن کامل

ANN BASED MODELING FOR HIGH STRENGTH CONCRETE BEAMS WITH SURFACE MOUNTED FRP LAMINATES

This study focuses on using an artificial neural network (ANN) based model for predicting the performance of high strength concrete (HSC) beams strengthened with surface mounted FRP laminates. Eight input parameters such as geometrical properties of the beam and mechanical properties of FRP laminates were considered for this study. Back propagation network with Lavenberg-Marquardt algorithm has...

متن کامل

Rover-Based Surface and Subsurface Modeling for Planetary Exploration

We develop and test a technique for the creation of coupled surface and subsurface models. Images from a stereo camera are used to estimate the motion of a rover that is collecting ground penetrating radar (GPR) data. The motion estimate and raw sensor data are used to build two novel data products: (1) A threedimensional, photorealistic surface model coupled with a ribbon of GPR data, and (2) ...

متن کامل

Quantitative Analysis of Watershed Geomorphology

Quantitative geomorphic methods developed within the past few years provide means of measuring size and form properties of drainage basins. Two general classes of de scriptive numbers are (1) linear scale measurements, whereby geometrically analogous units of topography can be compared as to size; and (2) dimensionless numbers, usually angles or ratios of length measures, whereby the shapes of ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of agricultural science and technology

ناشر: tarbiat modares university

ISSN 1680-7073

دوره 9

شماره Number 4 2010

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023